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Abstract-As a sequence of the prior low-Reynolds-number k-e model of Park and Sung, an improved 
version of the heat transfer model is developed for turbulent separated and reattaching flows. The equations 
of the temperature variance (k,) and its dissipation rate (se) are solved, together with the equations of k 
and E. In the present model, the near-wall limiting behavior close to the wall and the nonequilibrium effect 
away from the wall are incorporated. The validation of the model is applied to the turbulent flow over a 
backward-facing step and the flow over a flat plate. The predictions of the present model are cross- 
checked with the existing measurements and DNS data. The model performance is shown to be generally 

satisfactory. Copyright 0 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Separated and reattaching flows occur in many engin- 
eering problems. Examples may be found in nuclear 
reactors, gas turbines, electronic circuitry and heat 
transfer devises, to name a few. The flow separation 
and subsequent reattachment process generate 
extremely complex flow and heat transfer charac- 
teristics. Among others, they give rise to flow unsteadi- 
ness, pressure fluctuations, noise, etc. Also they tend 
to enhance heat and mass transfer and augment 
mixing. In particular, reattaching flows cause large 
variations of the local heat transfer coefficient, as well 
as substantial overall heat transfer augmentation. 
Thus, an accurate prediction of flow structure and 
attendant heat transport phenomena pose a significant 
and challenging task. 

Comprehensive knowledge of flow structure is an 
essential building block to analyze the attendant heat 
transport phenomena. As a multi-prong attack on the 
problem of turbulent flow and heat transfer processes 
in separated and reattaching flows, an improved ver- 
sion of the nonlinear low-Reynolds-number k-a model 
has been developed by Park and Sung [ 11. In their 
model, the limiting near-wall behavior and nonlinear 
Reynolds stress representations were incorporated. 
The main emphasis was placed on the adoption of 
&( =k”2y/v) instead of y+( = uy/v) in the low-Rey- 
nolds-number model, to avoid the difficulties at the 
separation and reattachment points (u, = 0). The non- 
equilibrium effect was also taken into account to 
describe the recirculating flows away from the wall. 

t Author to whom correspondence should be addressed. 

The model performance was shown to be generally 
satisfactory. Based on the afore-mentioned fluid flow 
model, efforts are now directed toward extending the 
model to thermal field computation at the k-6 equa- 
tion model level. 

A literature survey reveals that most of studies on 
heat transfer in separated and reattaching flows have 
contained mainly mean heat transfer rates and very 
little fluid dynamic data [2-4]. However, in order to 
understand the dynamic characteristics of turbulent 
heat transfer, turbulence quantities are more informa- 
tive. Contrary to the afore-said researches, studies on 
the combined heat transfer and fluid dynamic 
measurements in turbulent separated and reattaching 
flows are relatively scarce [5,6]. Combined heat trans- 
fer and fluid dynamic measurements downstream of a 
backward-facing step have been made by Vogel and 
Eaton [5], in which the heat transfer data coupled with 
temperature and velocity profiles were provided to 
scrutinize the mechanisms of controlling the heat 
transfer rate in reattaching flows. Ota and Kon [6] 
presented heat transfer in the separated and reat- 
taching flow over a blunt flat plate. By using the exper- 
imental data, they evaluated the eddy diffusivities of 
momentum (vt) and heat (a,), as well as the turbulent 
Prandtl number (Pr, = vt/at), in the thermal layer 
downstream of reattachment. 

In contrast to the preceding rare experiments, there 
have been many numerical thermal field computations 
in turbulent separated and reattaching flows [7-lo]. 
Most of the computations cited in the literature are 
implemented by using the k-8 model. Conventionally, 
the turbulent heat transfer is analyzed by employing 
the turbulent Prandtl number Pr,, in which the eddy 
diffusivity for heat a, is prescribed through the known 
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NOMENCLATURE 

c specific heat 

Cr mean skin friction coefficient 

C,, CQ, C,, model constants of k--E model 

C,, C?,,> C,, mode1 constants of k,)-.s” model 
,f,,,h, fi,,f; model functions of low-Reynolds- 

mean temperature 
turbulent time scale of flow field 

(=Ws) 
turbulent time scale of thermal field 

( = W+) 
number k-c: model 

.L f’ f’ f n,r, D21, h model functions of low- 
Reynolds-number k,,-cg model 

H height of backward-facing step 
h heat transfer coefficient 

[=qwl(T\y- Tr)l 
k turbulent kinetic energy 
k,, temperature variance 
Pr Prandtl number ( = Z/V) 

Pr, turbulent Prandtl number (= a,/vJ 

Pk production of turbulent energy - 
( = - u$l,d u,/ax,) 

PO production of temperature variance 
( = - ii@ T/&Y,) 

R time scale ratio ( = t,,/t,) 
R, turbulent Reynolds number ( = k’im) 

Sl, strain rate tensor [ = 0.5( U,,, + U, J] 
St Stanton number (= h/Upc) 

XR reattachment length. 

Greek symbols 
x, 2, thermal diffusivity and thermal eddy 

diffusivity 
b boundary layer thickness 
d,, thermal boundary layer thickness 
c dissipation rate of turbulent energy 

&ii dissipation rate of temperature 
variance 

1’3 v, kinematic viscosity and eddy viscosity 

P density 
CT~, 0,. model constants in turbulent diffusion 

of k, E equations 
Gh,, . o+, model constants in turbulent 

diffusion of kc,, E() equations 
“J,, vorticity tensor [ = 0.5( U,,, - (/,,,)I. 

eddy viscosity v,. This assumption, i.e. Pr, = constunt, 
satisfied Pope’s linear principle of scalars in turbulent 
flows [I 11. However, it is revealed that there are no 
universal values of Pr,, even in simple attaching flows 
[12, 131. Furthermore, it is expected that the values 
in separated and reattaching flows are substantially 
different from those in an ordinary boundary layer. 

In order to analyze heat transfer problems numeri- 
cally in separated and reattaching flows, a two-equa- 
tion model for heat transport is more universal [14]. 
In this model, the eddy diffusivity for heat CI, is mod- 
eled by solving the two equations of temperature vari- 
ance (k,) and its dissipation rates (EJ, together with li 
and E. The modeling of the two-equation (k,& mode1 
has been attempted by many researchers [14-l 71. 
Among others, Chung and Sung [IS] have developed 
the four-equation turbulence model for an attached 
boundary layer, where the four equations imply the 
transport equations for k, E, kc, and an. Recently, a 
series of heat transfer two-equation models have been 
developed by Nagano’s group [ 14, 16, 171. Their 
models showed reasonable predictions of heat transfer 
in flows, with an almost complete dissimilarity 
between flow and thermal fields. 

In the present study, an improved version of the 
low-Reynolds-number kH-cO heat transfer mode1 is 
proposed, in which the near-wall effect of separated 
and reattaching flows is fully incorporated. Emphasis 
is placed on the usage of R,., instead of y+ in the 
low-Reynolds-number model, together with the wall 
limiting behavior of the s0 equation. As a sequence of 

the prior model of Park and Sung [l], the thermal 
nonequilibrium effect (PO/&,,) is taken into account to 
deal with complex recirculation flows away from the 
wall. The model is tested with an attached boundary 
layer in the first. It is seen that the present mode1 
shows good prediction of DNS data in the near-wall 
region for both uniform wall temperature and uniform 
wall heat flux conditions [18, 191. The model per- 
formance of the present model is then applied to the 
turbulent flow behind a backward-facing step and a 
blunt body with separation bubble. The predicted 
results of the present model are compared with the 
published experimental data [5, 61. Furthermore, 
based on the computational results, the contour 
plots of Pr, and R( = (k,/&,)/k/&)) are visualized and 
analyzed. 

2. TURBULENCE MODEL FOR VELOCITY FIELD 

To evaluate accurately the turbulent heat transfer 
in separated and reattaching flows, the prediction of 
flow fields with sufficient accuracy should be preceded. 
As mentioned in the introduction, an improved ver- 
sion of the nonlinear low-Reynolds-number k-E model 
for turbulent separated and reattaching flows has been 
developed by Park and Sung [l]. In this section, the 
model is briefly summarized. Details regarding the 
model formulations are compiled in Park and Sung. 

For a stationary, incompressible flow field, the gov- 
erning equations are in the following, with the equa- 
tions of the turbulent kinetic energy k and its dis- 
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sipation rate E. These equations are written in 
Cartesian tensor notations as 

+ C,vv,S*:+C&k,S*S: fw, 
> 

(4) 

+ cm,vt t (snnsmj-~ SrnnSmn6ij) 

+ c,vt $ (WnPm, -; wmnwmn~,,) (5) 

k2 
v, = Cpf,; 

fP, = CP, 
(cp2 + C,$&) 

(q12 + pk/E)2 

The unknown Reynolds stress - uiuj is expanded up 
to the second-order term in a nonlinear k--E model [20, 
211. The nonequilibrium effect (PJE) is incorporated 
into C: which has the form Cz = C+ (0.95+0.05 
P,/E). S* is a modified strain rate parameter, S* = 2.75 
&/(v+vJ. Th e model constant C,, C,, C,, and Ce, 
are set as C, = 1.0, C, = 0.006, C,, = 1.45 and Ce, 
= 1.9, respectively. C,, , C.*, Cz, and C, are the model 

constants (Gel = 0.6, Cm, = 0.4, Cm, = 0.005 and 
C, = 0.09). The damping function f, is expressed as 
f, = f,, fp,, which reflects the effect of wall-proximity 
(f,,) and of nonequilibrium on the effect of eddy vis- 
cosity away from the wall (&,). 

3. TURBULENCE MODEL FOR THERMAL FIELD 

3.1. Governing equations 
The governing equations for turbulent heat trans- 

ports are expressed as [ 171 
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(10) 

(11) 

(12) 

As shown in the above, the eddy diffusivity for heat 
c(, in equation (11) is modeled in a manner similar to 
vt. Here, C, and fi are the model constant and the 
wall-damping function, respectively. The f>, function 
is modeled to account for the effect of wall-proximity 
(fn,) as well as the effect of nonequilibrium (fA,). The 
detailed model formulations forf; and the E* equation 
are elucidated in the following section, in conjunction 
with the temperature variance (k,) and its dissipation 
rate (so) together with k and a. 

3.2. Formulations of fn, and f*, 
For the accurate prediction of heat transfer in sep- 

arated and reattaching flows, it is highly important to 
reproduce the near-wall limiting behavior correctly. 
In the near-wall region, the asymptotic behaviors of 
instantaneous velocity and temperature maintain the 
relations -3 cc y3, aTjay a y”, cc, a y3, k a y2 and 
E = v(&~~/~x,)(~u,/~x~) + E, for y + 0. Consequently, 
the damping function fl in equation (11) has to satisfy 
the relation, fn a y-l. As is well known, the non- 
equilibrium effect becomes dominant in the region of 
separated and reattaching flows. In order to account 
for this effect in the present model, a decomposition 
of fA is attempted, i.e. f>, = fA, fA,. The main rationale 
for this decomposition is that fA, is intended to rep- 
resent the damping effect near the wall and f;, is con- 
sidered for the nonequilibrium effect away from the 
wall. 

In the first, the modeling off+ is taken into con- 
sideration. In a manner similar to the formulation of 
f,, in flow fields, f;, is expressed as 

f+ =(1- T,,)(l+ 10T,JR:.25) (14) 

T,, = exp[ - (&r], (15) 

where Pr denotes the Prandtl number. The wall- 
reflection function T,, represents the effect of wall- 
proximity in the near-wall region. As pointed out earl- 
ier, fA, is found to satisfy the wall limiting behavior, 
i.e.& a y-’ [14]. 

Next, the effect of nonequilibrium away from the 
wall VA, = 1) is inspected. Since the modeling of tur- 
bulent heat transfer in separated and reattaching flows 
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is dealt with in the present study, we should consider 
both the effect of nonequilibrium of the velocity field 
(Pk/e) and that of the thermal field (P,/E,). Here, P(, 
represents the rate of production of the temperature 
fluctuations, P0 = - 2u,&?T/&~,. In order to formulate 
thef;, form in the nonequilibrium region, the concept 
of the algebraic stress/flux model is employed [22] : 

u,o = 2kko(P,o + &d 
k,,(P, -E) +k(P(,-E,l) - (‘6) 

- 
where P,, denotes the production ratesLf u,u, and u,H, 
respectively, i.e. P,, = - u,u,~W/dx,- u,eau,ja_y,. q$,, 
represents the pressure-temperature-gradient cor- 
relation, &, = pao/a.x, [22]. 

In order to extract a relation& from equation (16), 
some manipulations are needed. For example, for an 
attached boundary-layer flow, the following turbulent 
heat flux may be expressed as 

2kMP20 + $2”) 
v” = k,(P,-c)+k(P,-c,)’ (17) 

In the above, P,() becomes Pzc, = -c’aT/ay, which 
is the term normal to the wall. In this form, the normal 
velocity fluctuation term has been already derived in 
the velocity field [ I]: 

7 = fk_ 1 (1 -CdP& k, 

3 3 P,Ia+(C, - 1) (18) 

The & term in equation (17) is modeled as [22] 

42,, = -c,,;,e, (19) 

where C,” is the model constant (C,,, = 3). Sub- 
stitution of equation (19) into equation (17) gives the 
following expression for 2 : 

-v0 = 
4(CZPk/E_tC, - 1) 

P,/e, - 1 
2C,,,-lfP,/s+7 (PJE+C, - 1) 

where the model function& can be formulated, which 
accounts for the nonequilibrium effect away from the 
wall. As is evident,& is a function of the parameters 
of nonequilibrium, i.e. Pk/~ and PRIcO. A simplified f,.? 
is expressed as 

“-’ = (c;., +p,i&)(Ci4~t~IE-t(P~IE”- 1)/R) ’ 

(2’) 

The limiting behavior of wall turbulence should be 
taken into account to balance the so-budget in the 
near-wall region. It is known that the near-wall 
asymptotic behavior of wall turbulence is derived as : 
k N y* and k,, N y*. Thus, the following relations are 
required to avoid the singularities of the &,-equation 
near the wall, i.e. f6, cc y* and f& cc y2. Based on this 
reasoning, the damping function ,fn, is modeled fb, 
= 1 -exp( -O.O6R,,), which is basically the Van- 

Driest form. Note that R, is also used instead of y+ to 
cope with the difficulties in separated and reattaching 
flows. 

where R is the ratio of the characteristic decay times In order to model the fn, function and determine 
for the turbulent temperature and velocity fields, the model constants (C,, and CnI), the decay law of 
R =(k&J/(k/~). The new model constants are homogeneous turbulence is employed in the present 

readjusted as C;., = 10.71, C,, = 4.29, C;., = 1.5 and 
Cj., = 5.0, respectively. 

On the other hand, it is important to note that the 
effect of nonequilibrium of the velocity field (Pk/.z) has 
been fully accounted for in the velocity model [I]. In 
order to avoid these duplicate considerations, a more 
simplified fi,:,, is proposed in the present study : 

6 

.‘& = 6+ (P,,/Q- 1)/R’ 

As can be seen in equation (22) ,& is formulated 
from equation (2 1) by setting P,J.s = 1. The influence 
of the nonequilibrium (P,/E # 1) on f2, has been scru- 
tinized, however, the relatively small effects are esti- 
mated. Computations have been made for the flow 
behind a backward-facing step, and the results indi- 
cate that the fA, form in equation (22) depicts the 
dominant heat transfer characteristics satisfactorily. 

3.3. Modeling of’ the c,, equation 
The e,-equation can be modeled in a similar way to 

the prior models [14, 16, 171: 

In the above equation, ,fh is the model function for 
turbulent diffusion. It is revealed that the roles of 
turbulent diffusion are substantial in the near-wall 
region [I, 231. In the present study, the following 
model is thus proposed as 

ii = 1+5Oexp 
R, R, 

-=25,m . 
1 

which is modified from theJ; function in the velocity 
fields [I]. The same model functionf, is used in the 
k,-equation. The model constants C,, and Cp2 for the 
production terms in the &,-equation are determined by 
fitting the DNS data [18, 191, i.e. C,, = 0.9 and C,? 
= 0.72, respectively. These values are shown to be 

very close to those of other models [14, 16, 171. 
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study [ 141. In a homogeneous decaying turbulent flow, 
the .+-equation becomes simply 

where the x-axis is taken in the flow direction. By 
manipulating the other equations (k, E and k,) for a 
homogeneous decaying turbulence, we also obtain 

Here, the function fi is modeled by considering the 
effect of free-turbulence [ 11. 

Equations (24) and (25) yield the following 
relations C,,fn, = 1 and CnJn, = CJ2- 1. If we 
suppose the initial period of decaying turbulence 
(fn, = fn, =fi = l), the model constants can be set 
as Cn, = 1 and Cn, = 0.9 [14]. Next, the fn, model 
function can be modeled as 

where the leading term, i.e. (C,* fi- 1)/C,* represents 
the effect of free-turbulence andf4, denotes the wall- 
proximity near the wall. fD, is obtained by fitting the 
DNS data 

fD, = 1 -exp(-0.06R,,)[cos(0.88&) 

+0.493&in(O.88&)]. 

The use of fD, reveals that the near-wall behaviors in 
separated and reattaching flows can be resolved with 
a good accuracy. Obviously, fD, satisfies the limiting 
behavior fD, cc y*. 

4. RESULTS AND DISCUSSION 

The main aim of the present model is to predict 
turbulent thermal quantities in separated and reat- 
taching flows. However, it is important to ascertain 
the generality and accuracy of the present model to 
an attached boundary layer. Since the turbulence 
quantities are quantitatively available from DNS data 
[18, 191, first we have applied the model to a fully 
developed channel flow with two typical boundary 
conditions, i.e. with a uniform wall temperature and 
a uniform heat flux. Next, the proposed model is tested 
for the combined heat and fluid flow over a backward- 
facing flow and the flow over a blunt flat plate. These 
flow configurations are frequently used for bench- 
marking the performance of turbulence models for 
separated and reattaching flows. The model pre- 
dictions are compared with the experimental data of 
Vogel and Eaton [5] for a backward-facing step flow 
and Ota and Kon [6] for a flow over a blunt flat plate. 

- AKN model 

,+l” 

10 

v- ~~ 
1 10 

Y+ 
100 

Fig. 1. Comparison of the predicted T with the DNS data. 

4.1. Model performance in an attached boundary layer 
The numerical scheme used is a well-established 

finite-volume method. The boundary conditions are : 

u = k = ks = 0, E = va2klay*, E. = ua2keiay*, 

T, = constant or qw = constantat the wall ; 

aujay = aklay = a&jay = aTjay = aksjay 
= a&p/ay = 0 

at the central axis. In order to obtain the grid-inde- 
pendent solutions, we need 101 nonuniform grid 
points in the direction normal to the wall. The grid 
convergence was checked and the outcome of these 
tests were found to be satisfactory. 

The predicted profiles of temperature T+ by the 
present model are exhibited in Fig. 1 under two differ- 
ent wall thermal conditions. The selected Reynolds 
numbers are Re, = 150 and 180, for which the DNS 
data exist. The model predictions by Abe et al. [17] 
(hereafter referred to as AKN model) are also dis- 
played for comparisons. This is based on the belief 
that the AKN model is recently developed and can be 
regarded as a reliable model for predicting fluid flow 
and heat transfer in separated and reattaching flows. 
As seen in Fig. 1, the present model shows good pre- 
dictions with the DNS data for both the uniform wall 
temperature and uniform wall heat flux conditions 
[ 18, 191, while the AKN model slightly underpredicts 
in the outer region of a boundary layer (y’ > 50). 

The predicted profiles of temperature variance ke+ 
are shown in Fig. 2. The DNS data of Kim and Moin 
[18], with a uniform wall temperature condition 
(Tw = constant), is included for comparison. Both the 
present model and the AKN model provide pre- 
dictions similar to the DNS data, however, the pre- 
dicted results are slightly underpredicted. Compared 
to the prior k+ profile in velocity fields by Park and 
Sung [l], the predicted ke+ profile is seen to be less 
accurate. The near-wall behavior of .$ is shown in 
Fig. 3. The DNS data of Kasagi et al. [I91 is employed 
with the uniform wall heat flux condition, i.e. 
qw = constant. As shown in Fig. 3, the present model 
gives good agreement with the DNS data. In particu- 
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Fig. 

G 
2 

- Present model 

1 

0 
0 40 60 120 160 200 

Y+ 
2. Comparison of the predicted k, with the DNS data. 

- Present model 
----.., AKN model 

0 40 60 Y t 120 160 

n I , 1 I 

Fig. 3. Comparison of the predicted B,, with the DNS data. 

lar, the present model follows the wall behavior fairly 
well. As pointed out in the f,., formulation, the tur- 
bulent heat flux 2 needs to satisfy the near-wall 
asymptotic behavior of v0 cc .v3. It is found that this 
relation is reproduced accurately in the near-wall 
region. 

4.2. Model performance in separated and reattaching 
POWS 

As mentioned earlier, two benchmarking exper- 
imental results are selected to test the model for sep- 
arated and reattaching flows; a backward-facing step 
flow [5] and a flow over a blunt flat plate [6]. Before 
proceeding further, the boundary conditions and 
numerical procedure for these elliptic computations 
are briefly summarized in the following. The boundary 
conditions are : U = V = k = k0 = 0, c = va2k/an2, 
E@ = uc?2k0/an2, aPlan = 0 and qw = constant at the 
bottom wall surface. The inlet conditions are given 
from the experimental conditions together with 
aP/an = 0. Table 1 lists the experimental conditions 

0.002 

c f 
0 

-0.002 

0.004 

St 
0.002 

0 
-1 0 1 2 3 

x* 
Fig. 4. (a) Comparison of the predicted C, with the exper- 
imental data, (b) comparison of the predicted St with the 

experimental data. 

for two cases [5, 61. The Neuman conditions are 
applied at the outlet. The specifics regarding the 
numerical procedure and grid resolution are found in 
Park and Sung [l]. 

As a validation of flow field computation, the wall 
shear stress coefficient (Cr) is exhibited in Fig. 4(a). 
which is closely related to the prediction of turbulent 
heat transfer near the wall. The predicted (Cr) is plot- 
ted against a nondimensional streamwise coordinate 
x* = (X-XxR)/XR, together with the experimental 
data of Vogel and Eaton [S]. Here, X, represents 
the reattachment length. The step-height Reynolds 
number is Re, = 28000. It is seen that the present 
model prediction in the recirculation region is in better 
agreement with the experiment than the AKN model 
prediction. 

The Stanton number St profiles are displayed in Fig. 
4(b) by using the same coordinate X*. The Stanton 
number profiles by employing the turbulent Prandtl 
number Pr, = 0.9, without solving the kO, e0 equations, 
are also plotted in Fig. 4(b). The comparison between 
the predicted results and the experimental data indi- 
cates that the present model prediction is in overall 
better agreement with the experiment. The predicted 
result of Pr, = 0.9 is overpredicted near the recir- 
culation region. However, all of the Stanton number 
profiles have the same general features, i.e. the peak 
heat transfer rates occurs near the reattachment region 
(X* = 0) and there is a low heat transfer rate in the 

Table I. Experimental conditions 
__- 

Vogel and Eaton [5] Ota and Kon [6] 
flow over a backward-facing step flow over a blunt flat plate 

Reynolds number 
Expansion ratio 
Inlet conditions 

Heat flux at wall 
Grid mesh 

Re, = 28 000 
ER = 1.25 
Reo = 3370 
6/H = 1.1 
270 W mm2 
201x101 

Reynolds number Re, = 12000 
Half plate thickness H = 0.011 m 
Inlet conditions U, = 18.8 m ss’ 

Heat flux at wall 
$9$$.8% 

Grid mesh 201x101 
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0.006 

0.002 

0 
10000 

- Present Model 
‘----’ AKN Model 
---- Pr,= 0.9 
0 0 0 Vogel & Eaton [?I] 

20000 30000 40000 
ReH 

Fig. 5. Comparison of the predicted St,,, with the exper- 
imental data. 

recirculation region. The heat transfer coefficient 
recovers fairly rapidly to flat-plate behavior down- 
stream of reattachment [5]. 

Comparisons are extended to the maximum Stan- 
ton number St,, in Fig. 5. The maximum Stanton 
number for 6/H = 1.1 is plotted by varying ReH 
(13000 < Re, < 42000). Here, 6/H represents the 
initial boundary layer thickness normalized by the 
step height H. It is clearly seen that the present com- 
puted results are in excellent agreement with the exper- 
iment. However, the predicted results by assuming 
Pr, = 0.9 are seen to be slightly overpredicted, while 
the AKN model underpredicts. In general, it is known 
that St,,, is a function of ReH [5]. In Fig. 5, St,,,, is 
shown to be monotonically decreased as ReH 
increases. 

The profiles of turbulent flux (a+) near the recir- 
culation region (-0.7 < x* < 0.5) are shown in Fig. 
6. The step height Reynolds number is ReH = 13000 
and 6/H = 1.1, respectively. As can be seen, rather 
poor agreement is obtained between the predicted 
results and the experiment [5]. Moreover, the devi- 
ation is amplified near the wall region. This inad- 
equate prediction may be attributable to the fact of 
incompleteness of the present model. On the other 
hand, as stressed by Vogel and Eaton [5], the fall off 
of the turbulent transport approaching the wall may 

- Present Model 
---- 

Rez= 13,000 
Pr,= 0.9 

0 0 0 Vogel d( Eaton [5] 

Y/H 

- 
VO+ 

Fig. 6. Comparison of the predicted -u@ with the exper- 
imental data. 

be exaggerated due to the constraint of their measure- 
ment technique. However, the overall trends between 
them are generally consistent. It is seen that the change 
near the step is representative of the shift in the tur- 
bulent transport between a free shear layer and a wall- 
boundary flow. At the position downstream of one 
half reattachment (x* = 0.5) the profile is very simi- 
lar to that found on a flat plate, i.e. uB+ highest near 
the wall, dropping to zero in the free stream. 

Based on the wealth of numerical results, it is useful 
to visualize the contour plots of Pr,( = a&,). The iso- 
contour lines of Pr, are plotted in Fig. 7. It should 
be noted that the direct measurement of Pr, is very 
cumbersome. However, it is true that the Pr, dis- 
tributions for turbulent separated and reattaching 
flows are informative for understanding the heat 
transport characteristics. As shown in Fig. 7, the 
assumption of Prt = constant is admittable to some 
extent in the region of no recirculations. However, a 
closer inspection of the enlarged view near the recir- 
culating region discloses that the assumption of Pr,_ 
= constant is not acceptable. Near the separation 

point, it is found that Pr, increases considerably. This 
may be attributed to the fact that an active heat trans- 
fer exists between the cold approaching stream and 
the hot recirculating thermal plume from the heated 
wall, i.e. a, is enhanced. Furthermore, Pr, increases 
in the separated free-shear layer. On the contrary, 
relatively small values of vt and a, are obtained in the 
present computation very close to the wall. 

Further evidence of the present model performance 
is seen in the plot of the time scale ratio 
R = (k,/e,)/(k/e) in Fig. 8. The time scale ratio is 
defined by the ratio of the time scale of energy con- 
taining eddies in the thermal field (k&,J to that in a 
velocity field (k/s). Since the turbulent mixing in the 
separated free-shear layer is so strong, the velocity 
time scale (k/E) becomes very small. In contrast, the 
thermal time scale (kc/es) is relatively large from the 
computation. This shows that R is very large along 
the separated free-shear layer. 

Finally, the flow over a flat plate with blunt leading- 
edge is calculated by the present model. Comparisons 
are made with the experimental data [6]. The relevant 
experimental conditions are listed in Table 1. The 
distributions of the turbulent heat flux at several cross- 
sections, including the separated, reattached and rede- 
veloped flow regions, are shown in Fig. 9. It is seen that 
the present model predictions are in broad agreement 
with the experiment: However, relatively large devi- 
ations are displayed around the reattachment point. 
These discrepancies may be attributed to their exper- 
imental procedure. As stated by Ota and Kon [6], 
the turbulent heat flux was estimated from Kramer’s 
formula. This formula is based on the assumption that 
the turbulent fluctuating velocity and temperature are 
very small, as compared with the corresponding mean 
values. It means that the turbulent shear stress may 
not be affected by heating the wall. They addressed 
that the experimental uncertainty may be of an order 
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0.00 0.29 0.57 0.06 1.14 1.42 1.71 2.00 

Reki = 28,000 

Fig. 7. Contour plots of Pr, in a backward-facing step flow. 
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Re, = 28,000 

Fig. 8. Contour plots of R in a backward-facing step flow 
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experiment. They were found to be qualitatively con- 
sistent with the experiment. 

Y/H 
2 

0 0 0 0 0 0 0 0.006 
VG 

Um(Tw-Tm) 
Fig. 9. Comparison of the predicted -3 with the exper- 

imental data. 

of +50% in the reattaching flow region. However, 
in the redeveloping region, the agreement between 
computation and experiment is seen to be satisfactory. 

5. CONCLUSION 

An improved version of the low-Reynolds-number 
kg&e model has been developed for predicting heat 
transfer in turbulent separated and reattaching flows. 
Emphasis was placed on the adoption of R,( = k’12y/v) 
instead of y+( = u,v/v) in the low-Reynolds-number 
model. The limiting near-wall behavior close to the 
wall and the nonequilibrium effect in the recirculating 
region away from the wall were fully taken into con- 
sideration. The wall limiting behavior of the +equa- 
tion was also incorporated. In the first, the present 
model was tested against the DNS data of a fully 
developed channel flow with a uniform wall tem- 
perature and with a uniform heat flux. The near-wall 
behaviors of ke and en were reproduced fairly well. 
Next, the validation was extended to the flow over a 
backward-facing step and the flow over a blunt flat 
plate. In testing the backward-facing step flow, the 
predicted results of wall shear stress coefficient (Cr) 
and Stanton number (St) were shown to be in good 
agreement with the relevant experiment. In particular, 
the maximum Stanton number (St,,,) showed excel- 
lent agreement with the experiment. It was revealed 
that the present model prediction is in overall better 
agreement with the experiment than the case of 
Pr, = 0.9. Relatively poor agreement was obtained for 
the predictions of turbulent heat flux. However, the 
overall trends were generally satisfactory. From the 
contour plots of Pr, and R, valuable information could 
be extracted. For the prediction of turbulent heat 
transfer over a blunt flat plate, the profiles of turbulent 
heat flux were calculated and compared with the 
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